Contents

Contributors
Preface
Volumes in Series

Section I. Organelles and Cellular Structure

1. Monitoring Cytoskeletal Dynamics in Living Neurons Using Fluorescence Photoactivation
 Anne Gauthier-Kemper, Carina Weissmann, Hans-Jürgen Reyher, and Roland Brandt
 1. Introduction
 2. Generation and Expression of PAGFP Fusion Constructs with Cytoskeletal Proteins
 3. Fluorescence Photoactivation, Live Cell Imaging, and Data Analysis
 Acknowledgments
 References

2. Red/Far-Red Fluorescing DNA-Specific Anthraquinones for Nucl:Cyto Segmentation and Viability Reporting in Cell-Based Assays
 Roy Edward
 1. Introduction
 2. The Basic Requirement for Counterstaining
 3. An Optimized Counterstain for GFP-Based Assays
 4. Cellular Compartment Segmentation
 5. Labeling Cells in Live and Fixed End-Point Assays
 6. Protocol for Differential Dual Nuclear/Cytoplasmic Counterstaining in Live Cells
 7. Protocols for Differential Dual Nuclear/Cytoplasmic Counterstaining in Fixed Cells
 8. Measuring Cellular DNA Content
 9. Protocol: DRAQ5™ DNA Content Measurement by Imaging
 11. Further Augmentation of Compartment Segmentation
12. Cell Enumeration and Morphometrics: Early Sentinels of In Vitro Toxicology 37
13. A Far-Red Viability Dye Derivative 39
14. Protocols: Use of DRAQ7™ to Identify Membrane-Compromised Cells 40
15. Summary 42
Acknowledgment 43
References 43

3. Methods to Measure Actin Treadmilling Rate in Dendritic Spines 47
Mikko Koskinen, Enni Bertling, and Pirta Hotulainen

1. Introduction 48
2. Methods 51
Acknowledgments 57
References 57

4. Live-Cell Imaging of Clathrin Coats 59
Comert Kural and Tom Kirchhausen

1. Introduction 60
2. Dynamics of Clathrin Assembly 61
3. Limits of Fluorescence Microscopy 62
4. TIRF Microscopy 63
5. How to Optimize Your TIRF System 64
6. Spinning-Disk Confocal Microscopy 65
7. Spherical Aberration Correction Applied to Spinning-Disk Confocal Microscopy 66
8. Getting Around the Diffraction Limit 67
9. Use of 2D Spinning-Disk Confocal Microscope to Study Clathrin-Mediated Endocytosis at the Ventral and Dorsal Surfaces of a Cell 69
10. Use of TIRF Microscopy to Study Clathrin-Mediated Endocytosis 70
11. The Third Dimension 71
12. 3D Tracking in Spinning-Disk Imaging 72
13. Use of 3D Tracking to Monitor Clathrin-Mediated Entry of Reovirus Particles at the Apical Surface of Polarized Cells 74
14. Using the Optimum Pixel and Step Sizes in z-Stacks 76
15. Conclusion 76
Acknowledgments 77
References 77

5. Imaging the Mitotic Spindle 81
Paul S. Maddox, Anne-Marie Ladouceur, Rajesh Ranjan, Jonas Dorn, Hery Ratsima, Damien D'Amours, and Amy S. Maddox

1. Introduction 82
2. Modern Light Microscopy 83
3. Examples 93
4. Conclusions 101
Acknowledgments 101
References 101

6. Modeling of Spatial Intracellular Signaling Events in Neurons 105
Wendy C. Wenderski and Susana R. Neves
1. Introduction 105
2. Computational Modeling of Intracellular Signaling 106
3. Imaging Signaling Events in Striatal Neuronal Cultures 112
4. Experimental Validation of Model Predictions 121
Acknowledgments 121
References 121

7. Imaging Chromosome Dynamics in Meiosis in Plants 125
Moira J. Sheehan and Wojciech P. Pawlowski
1. Introduction 126
2. Technical Considerations 128
3. Protocols and Methods 134
Acknowledgments 141
References 141

8. Analyzing Lysosomes in Live Cells 145
Paul R. Pryor
1. Introduction 145
2. Visualizing Lysosomes 146
3. Measuring Lysosomal Ions 152
4. Delivery of Phagocytic Material to the Lysosome 153
5. Endocytosis of Membrane Probes to the Lysosome 154
References 156

Mario Bramshuber and Gerhard J. Schütz
1. Movements and Interactions Drive Biomolecular Function 160
2. The Concept: “Please Move to the Dark, so That We Can See You” 162
3. Prooﬁng the Principle 164
4. Some Examples 166
5. A User Guide to TOCCSL 176
6. Analysis 179
7. Conclusions 181
Acknowledgments 182
References 182
10. Visualizing Cardiac Ion Channel Trafficking Pathways

James W. Smyth and Robin M. Shaw

1. Introduction 188
2. Introducing Recombinant DNA for Ectopic Expression of Fluorescent Ion Channel Fusion Proteins 190
3. Isolating De Novo Ion Channel Forward Trafficking 191
4. Recreating Cardiomyocyte-Like Membrane Subdomains in Model Cell Systems 192
5. Tools for Visualizing Forward Trafficking and Delivery of Ion Channels in Real Time 197
6. Data Analysis 201
7. Concluding Remarks 201
Acknowledgments 202
References 202

11. Live Cell Imaging of the Cytoskeleton

Eve G. Stringham, Nancy Marcus-Gueret, Laura Ramsay, and Kristopher L. Schmidt

1. Introduction 204
2. Live Imaging of MTs in Tissue Cultured Cells 206
3. Live Imaging of MTs in Whole Organisms 209
4. Live Imaging of Actin Filaments in C. elegans 211
References 214

12. Fluorescence Single-Molecule Imaging of Actin Turnover and Regulatory Mechanisms

Naoki Watanabe

1. Introduction 220
2. Introducing a Low Density of Fluorescent Proteins in XTC Cells 222
3. Observation of XTC Cells Spreading on Poly-L-lysine (PLL)-coated Glass Coverslips 224
4. Data Analysis 229
Acknowledgments 232
References 232

13. Analysis of Cell Dispersion and Migration by Video-Microscopy

Bonnomet Arnaud, Terryn Christine, Cutrona Jérôme, Jonquet Antoine, Birembaut Philippe, and Zahm Jean-Marie

1. Introduction 234
2. Video-Microscope 235
3. Model of Cell Dispersion 236
Section II. Molecules and Ions

14. Real Time Qualitative and Quantitative GLUT4 Translocation Assay

Malepalli Vavachan Vijayakumar and Manoj Kumar Bhat

1. Introduction
2. GLUT4 Translocation Assay
3. Methods and Procedures
4. Conclusions and Future Applications

Acknowledgements
References

15. Advanced Imaging of Cellular Signaling Events

Marek Cebecauer, Jana Humpolíčková, and Jerémie Rossy

1. Introduction
2. Selection of Tools and Transfection of Cells
3. Imaging of Cell Signaling Events
4. Data Analysis
5. Summary

Acknowledgments
References

Subhasri Ghosh, Suvarajit Saha, Debanjan Goswami, Sameera Bilgrami, and Satyajit Mayor

1. Introduction
2. Theoretical Concepts
3. Homo-FRET Measurements in an Imaging Modality: Practical Considerations
4. Implementation of High-Resolution Steady-State Anisotropy Imaging Modalities
5. Detecting Homo-FRET Using Time Resolved Anisotropy (TRA) Modalities
6. Prospects and Perspectives

Acknowledgments
References
17. Time-Resolved Luminescence Resonance Energy Transfer Imaging of Protein–Protein Interactions in Living Cells
Harsha E. Rajakapse and Lawrence W. Miller

1. Introduction 330
2. Lanthanide Protein Labels 332
3. Transfection and Cellular Delivery of TMP-Lumi4 335
4. Time-Resolved LRET Microscopy 338
Acknowledgment 344
References 344

18. Imaging of Corticosteroid Receptors in Live Cells
Mayumi Nishi

1. Introduction 348
2. Time-Lapse Imaging of GR and MR in a Single Cell 349
3. Subcellular and Intracellular Dynamics of GR and MR Examined by FRAP Analyses 354
4. Interaction of Corticosteroid Receptors in the Nucleus 354
5. Notes 357
Acknowledgment 360
References 360

19. Investigating Second Messenger Signaling In Vivo
Rüdiger Rudolf, Mathias Hafner, and Marco Mongillo

1. Introduction 364
2. Multimodal Imaging in Living Mouse Skeletal Muscle 365
3. Adaptations to Tissues Other Than Skeletal Muscle 375
4. Concluding Remarks 380
Acknowledgments 380
References 380

20. Probes for Intracellular RNA Imaging in Live Cells
Philip J. Santangelo, Eric Alonas, Jeenah Jung, Aaron W. Lifland, and Chiara Zurla

1. Introduction 384
2. Imaging RNA in Live Cells 385
3. Limitations of Single-Label Probes and Molecular Beacons 386
5. Time-Lapse Imaging of Native, Nonengineered β-actin mRNA Granule Dynamics 394
6. Imaging RNA-Protein Colocalization Using MTRIPs 395
<table>
<thead>
<tr>
<th>21. Imaging the Glycome in Living Systems</th>
<th>401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyangzi Li, Feiyan Mock, and Peng Wu</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>402</td>
</tr>
<tr>
<td>2. Bioorthogonal Chemistry in Glycan Labeling: Merits and Limitations</td>
<td>403</td>
</tr>
<tr>
<td>4. Labeling Cell Surface Glycans Bearing the LacNAc Disaccharide In Chinese Hamster Ovary(CHO) Cells for Fluorescence Imaging</td>
<td>412</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>416</td>
</tr>
<tr>
<td>References</td>
<td>416</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Intracellular Magnesium Detection by Fluorescent Indicators</th>
<th>421</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valentina Trapani, Monika Schweigel-Röntgen, Achille Cittadini, and Federica I. Wolf</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>422</td>
</tr>
<tr>
<td>2. Fluorescent Indicators for Magnesium</td>
<td>424</td>
</tr>
<tr>
<td>3. Magnesium Detection in Live Cells by Spectrofluorimetry</td>
<td>428</td>
</tr>
<tr>
<td>4. Magnesium Detection in Live Cells by Microscopy</td>
<td>434</td>
</tr>
<tr>
<td>5. Future Perspectives</td>
<td>441</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>442</td>
</tr>
<tr>
<td>References</td>
<td>442</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23. Illuminating Mobile Zinc with Fluorescence: From Cuvettes to Live Cells and Tissues</th>
<th>445</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhen Huang and Stephen J. Lippard</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>446</td>
</tr>
<tr>
<td>2. A Guide to Fluorescent Zinc Probes</td>
<td>448</td>
</tr>
<tr>
<td>3. Representative Procedure for Imaging Mobile Zinc in Live Cells</td>
<td>457</td>
</tr>
<tr>
<td>4. Imaging Endogenous Neuronal Zinc in Live Cells and Tissues</td>
<td>462</td>
</tr>
<tr>
<td>5. Concluding Remarks</td>
<td>464</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>465</td>
</tr>
<tr>
<td>References</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24. Quantitative Fluorescent Live Cell Imaging of Intracellular Ca^{2+} and H^{+} Ions in Malaria Parasites</th>
<th>469</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petra Rohrbach</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>470</td>
</tr>
<tr>
<td>2. Live Cell Imaging of Intact Malaria Parasites</td>
<td>471</td>
</tr>
</tbody>
</table>