CONTENTS

Contributors
Preface
Volumes in Series

Section I. Measuring and Engineering Central Dogma Processes

1. **Sequence-Specificity and Energy Landscapes of DNA-Binding Molecules**
 Joshua R. Tietjen, Leslie J. Donato, Devesh Bhimisaria, and Aseem Z. Ansari
 1. Introduction
 2. Array-Based Cognate Sequence Identification
 3. Solution-Based Cognate Sequence Identification
 4. Data Analysis and Visualization of Specificity, Binding Energy, and Genomic-Association Landscapes
 References

2. **Promoter Reliability in Modular Transcriptional Networks**
 Rajat Anand, Navneet Rai, and Mukund Thattai
 1. Results
 2. Conclusion
 3. Methods
 Acknowledgments
 References

3. **The Analysis of ChIP-Seq Data**
 Wenxiu Ma and Wing Hung Wong
 1. Introduction
 2. Planning of ChIP-Seq Experiments
 3. Processing and Analyzing ChIP-Seq Datasets
 References
4. Discussion
Acknowledgment
References

4. Using DNA Microarrays to Assay Part Function
Virgil A. Rhodius and Carol A. Gross

1. Introduction
2. Different Microarray Platforms
3. Experimental Design
4. Experimental Variation
5. Sample Preparation
6. Microarray Preprocessing
7. Clustering
8. Differential Expression Analysis
9. Data Analysis: Understanding the Perturbation
10. Closing Remarks
References

5. Orthogonal Gene Expression in Escherichia coli
Wenlin An and Jason W. Chin

1. Introduction
2. High-Throughput Screening for Orthogonal T7 Promoter O-rbs System
3. Integration of Orthogonal Pairs to Synthesize Transcription–Translation FFL
4. Engineering the FFL Delay via the Discovery of a Minimal O-rRNA
5. Discussion
6. Material and Methods
Acknowledgments
References

6. Directed Evolution of Promoters and Tandem Gene Arrays for Customizing RNA Synthesis Rates and Regulation
Keith E. J. Tyo, Elke Nevoigt, and Gregory Stephanopoulos

1. Introduction
2. Promoter Modification by Error-Prone PCR
3. Generating Stable Tandem Gene Arrays for Controlling RNA Synthesis Rate
4. Concluding Remarks
References
Section II. Device and System Design, Optimization, and Debugging 157

7. Design and Connection of Robust Genetic Circuits 159
Adrian Randall, Patrick Guye, Saurabh Gupta, Xavier Duportet, and Ron Weiss
1. Introduction 160
2. Sources of Failure 161
3. Robustness Principles and Examples in Natural Systems 163
4. Methods for Obtaining Robust Synthetic Circuits 165
5. Robustness Trade-Offs 181
6. Conclusion 182
References 182

8. Engineering RNAi Circuits 187
Yaakov Benenson
1. Introduction 188
2. Constructing a Computational Logic Core for the RNAi-Based DNF Circuit 189
3. Constructing a Computational Logic Core for the RNAi-Based CNF Circuit 200
4. Transition from siRNA to miRNA 202
Acknowledgments 204
References 204

9. From SELEX to Cell: Dual Selections for Synthetic Riboswitches 207
Joy Sinha, Shana Topp, and Justin P. Gallivan
1. Introduction 207
2. General Precautions 208
3. In Vitro Selection 208
4. In Vivo Selection 212
References 219

10. Using Noisy Gene Expression Mediated by Engineered Adenovirus to Probe Signaling Dynamics in Mammalian Cells 221
Jeffrey V. Wong, Guang Yao, Joseph R. Nevins, and Lingchong You
1. Introduction 222
2. Design and Construction 224
3. Measurement 230
4. Broader Applications 234
References 234
11. *De novo* Design and Construction of an Inducible Gene Expression System in Mammalian Cells

Maria Karlsson, Wilfried Weber, and Martin Fussenegger

1. Introduction
2. Selection of a Conditional DNA-Binding Protein
3. Establishment of the Inducible Expression System
4. Optimization of the Expression System
5. Summary
Acknowledgments
References

239

12. BioBuilding: Using Banana-Scented Bacteria to Teach Synthetic Biology

James Dixon and Natalie Kuldell

1. Introduction
2. Eau d’coli
3. “Eau That Smell” Teaching Lab Using the MIT iGEM Team’s Eau d’coli Cells
4. Teaching Labs Modified for Resource-Stretched Settings
5. Summary
Acknowledgments
References

255

Section III. Device Measurement, Optimization, and Debugging

13. Use of Fluorescence Microscopy to Analyze Genetic Circuit Dynamics

Gürol Süel

1. Fluorescent Reporters
2. Constructing and Using Genetic Fluorescent Reporters
3. Fluorescent Time-Lapse Microscopy
4. Measuring and Interpreting Dynamics
5. Applications for Measurement of Circuit Dynamics
References

273

14. Microfluidics for Synthetic Biology: From Design to Execution

M. S. Ferry, I. A. Razinkov, and J. Hasty

1. Part I: Introduction
2. Part II: Fabrication

295
15. Plate-Based Assays for Light-Regulated Gene Expression Systems

Jeffrey J. Tabor

1. Bacterial Photography Protocol
2. Bacterial Edge Detection Protocol
3. Setting up a Projector–Incubator
4. The β-Galactosidase/S-Gal Reporter System
5. Quantifying Signal Intensity on the Plates
6. Microscopic Imaging of Agarose Slabs
7. Properties of Relevant Strains
8. Properties of Relevant Plasmids
References

16. Spatiotemporal Control of Small GTPases with Light Using the LOV Domain

Yi L. Wu, Xiaobo Wang, Li He, Denise Montell, and Klaus M. Hahn

1. Introduction
2. The LOV Domain as a Tool for Protein Caging
3. Design and Structure Optimization of PA-Rac
4. Activation of PA-Rac in Living Cells
5. Application of PA-Rac in Drosophila Ovarian Border Cell Migration
References

17. Light Control of Plasma Membrane Recruitment Using the Phy–PIF System

Jared E. Toettcher, Delquinn Gong, Wendell A. Lim, and Orion D. Weiner

1. Introduction
2. Light-Controlled Phy–PIF Interaction
3. Genetic Constructs Encoding Phy and PIF Components
4. Purification of PCB from Spirulina
5. Cell Culture Preparation for Phy–PIF Translocation
6. Imaging PIF Translocation Using Spinning Disk Confocal Microscopy
Acknowledgments
References
Brian Y. Chow, Amy S. Chuong, Nathan C. Klapoetke, and Edward S. Boyden

1. Introduction 426
2. Molecular Design and Construction 429
3. Transduction of Microbial Opsins into Cells for Heterologous Expression 432
4. Physiological Assays 435
5. Conclusion 438
Acknowledgments 439
References 439

Section IV. Devices for Metabolic Engineering 445

19. Metabolic Pathway Flux Enhancement by Synthetic Protein Scaffolding 447
Weston R. Whitaker and John E. Dueber

1. Introduction 448
2. Method—How to Build Modular Protein Scaffolded Systems for Metabolic Engineering Applications 454
3. Systems that May Benefit from Scaffolding 465
4. Concluding Remarks 465
Acknowledgments 466
References 466

20. A Synthetic Iterative Pathway for Ketoacid Elongation 469
C. R. Shen and J. C. Liao

1. Introduction 470
2. Natural Pathways Involving Ketoacid Chain Elongations Catalyzed by the LeuABCD-Dependent Mechanisms 471
3. IPMS and Similar Enzymes 473
4. Expansion to Nonnatural Pathways 475
5. Transfer of Citramalate Pathway to E. coli for Ketoacid Chain Elongation 478
6. Conclusion Remarks 480
References 480
Section V. Expanding Chassis

21. Synthetic Biology in *Streptomyces* Bacteria

Marnix H. Medema, Rainer Breitling, and Eriko Takano

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Synthetic Biology for Novel Compound Discovery in Streptomyces</td>
<td>486</td>
</tr>
<tr>
<td>2. Practical Considerations for Synthetic Biology in Streptomyces</td>
<td>488</td>
</tr>
<tr>
<td>3. Iterative Reengineering of Secondary Metabolite Gene Clusters</td>
<td>489</td>
</tr>
<tr>
<td>4. The Molecular Toolbox for Streptomyces Synthetic Biology</td>
<td>491</td>
</tr>
<tr>
<td>5. Transcriptional Control</td>
<td>492</td>
</tr>
<tr>
<td>6. Translational Control</td>
<td>494</td>
</tr>
<tr>
<td>7. Vectors</td>
<td>494</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>497</td>
</tr>
<tr>
<td>References</td>
<td>497</td>
</tr>
</tbody>
</table>

22. Methods for Engineering Sulfate Reducing Bacteria of the Genus *Desulfovibrio*

Kimberly L. Keller, Judy D. Wall, and Swapnil Chhabra

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>504</td>
</tr>
<tr>
<td>2. Chromosomal Modifications Through Homologous Recombination</td>
<td>505</td>
</tr>
<tr>
<td>3. Culturing Conditions and Antibiotic Selection</td>
<td>507</td>
</tr>
<tr>
<td>4. DNA Transformation</td>
<td>510</td>
</tr>
<tr>
<td>5. Screening Colonies for Proper Integration</td>
<td>513</td>
</tr>
<tr>
<td>6. Complementing Gene Deletions</td>
<td>514</td>
</tr>
<tr>
<td>7. Concluding Remarks</td>
<td>515</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>516</td>
</tr>
<tr>
<td>References</td>
<td>516</td>
</tr>
</tbody>
</table>

23. Modification of the Genome of *Rhodobacter sphaeroides* and Construction of Synthetic Operons

Paul R. Jaschke, Rafael G. Saer, Stephan Noll, and J. Thomas Beatty

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>520</td>
</tr>
<tr>
<td>2. Gene Disruption and Deletion</td>
<td>522</td>
</tr>
<tr>
<td>3. Construction of Synthetic Operons</td>
<td>527</td>
</tr>
<tr>
<td>4. Future Directions</td>
<td>532</td>
</tr>
<tr>
<td>References</td>
<td>533</td>
</tr>
</tbody>
</table>
24. Synthetic Biology in Cyanobacteria: Engineering and Analyzing Novel Functions

Thorsten Heidorn, Daniel Camsund, Hsin-Ho Huang, Pia Lindberg, Paulo Oliveira, Karin Stensjö, and Peter Lindblad

1. Introduction
2. Cyanobacterial Chassis
3. Biological Parts in Cyanobacteria
4. Genetic Engineering of Cyanobacteria
5. Molecular Analysis of Cyanobacteria
6. Conclusion and Outlook
Acknowledgments
References

539

25. Developing a Synthetic Signal Transduction System in Plants

Kevin J. Morey, Mauricio S. Antunes, Kirk D. Albrecht, Tessa A. Bowen, Jared F. Troupe, Keira L. Havens, and June I. Medford

1. Introduction
2. Foundation for Developing a Molecular Testing Platform for HK Systems
3. Technical Considerations in Developing a Eukaryotic Synthetic Signal Transduction System Based on Bacterial TCS Components
4. A Partial Synthetic Signal Transduction System Using Cytokinin Input
5. A Eukaryotic Synthetic Signal Transduction Pathway
6. Conclusions
7. Protocols
Acknowledgments
References

581

26. Lentiviral Vectors to Study Stochastic Noise in Gene Expression

Kate Franz, Abhyudai Singh, and Leor S. Weinberger

1. Introduction
2. The Lentiviral-Vector Approach
3. Production of Lentiviral Vectors and Transduced Cell Lines
4. Procedure for Constructing a CV² Versus Mean Plot
5. Inferring Promoter Regulatory Architecture from CV² Versus Mean Analysis
6. Conclusion
Acknowledgments
References

603

Author Index

Subject Index

623

651