CONTENTS

Contributors xi
Preface xv
Volumes in Series xvii

1. Analyses of Subnanometer Resolution Cryo-EM Density Maps 1
 Matthew L. Baker, Mariah R. Baker, Corey F. Hryc, and Frank DiMaio
 1. Introduction 2
 2. Features in a Subnanometer Resolution Density Map 3
 3. Tools: Analyzing a Subnanometer Resolution Density Map 4
 4. Protocol: From Density Map to Atomic Model 9
 5. Case Study: Mm-cpn 21
 6. Discussion 24
 Acknowledgments 25
 References 25

2. Methods for Segmentation and Interpretation of Electron Tomographic Reconstructions 31
 Niels Volkmann
 1. Introduction 32
 2. Noise Reduction 35
 3. Segmentation 36
 4. Detection and Mapping of Macromolecular Assemblies 38
 5. Classification and Averaging 39
 6. Validation 40
 Acknowledgments 41
 References 42

3. Integration of Cryo-EM with Atomic and Protein–Protein Interaction Data 47
 Friedrich Förster and Elizabeth Villa
 1. Introduction 48
 2. The Problem of Placing Assembly Subunits into Cryo-EM Maps 49
 3. Structure Prediction of Subunits 50
4. **Protein–Protein Interaction Data**

5. **Model Building of a Complex Using Cryo-EM and Additional Data**

6. **Refinement of Atomic Models Using High-Resolution Maps**

7. **Conclusion and Outlook**

References

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Unified Data Resource for Cryo-EM</td>
</tr>
<tr>
<td>Catherine L. Lawson</td>
</tr>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. EM Structural Data Archives</td>
</tr>
<tr>
<td>3. Deposition and Content</td>
</tr>
<tr>
<td>4. Access</td>
</tr>
<tr>
<td>5. Examples of Use</td>
</tr>
<tr>
<td>6. Future Prospects</td>
</tr>
<tr>
<td>7. Guide to Deposition of EM Structural Data</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Electron Crystallography and Aquaporins</td>
</tr>
<tr>
<td>Andreas D. Schenk, Richard K. Hite, Andreas Engel, Yoshinori Fujiyoshi, and Thomas Walz</td>
</tr>
<tr>
<td>1. Electron Crystallography</td>
</tr>
<tr>
<td>2. Contributions of Electron Crystallography to the Structural Biology of Aquaporins</td>
</tr>
<tr>
<td>3. Contributions of Structural Studies on Aquaporins to Advances in Electron Crystallography</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Cryoelectron Microscopy Applications in the Study of Tubulin Structure, Microtubule Architecture, Dynamics and Assemblies, and Interaction of Microtubules with Motors</td>
</tr>
<tr>
<td>Kenneth H. Downing and Eva Nogales</td>
</tr>
<tr>
<td>1. Introduction: The Role of Electron Microscopy in Tubulin Studies</td>
</tr>
<tr>
<td>2. Tubulin Studies by Electron Crystallography</td>
</tr>
<tr>
<td>3. Microtubule Structure</td>
</tr>
<tr>
<td>4. Structure of Microtubule Assembly/Disassembly Intermediates</td>
</tr>
<tr>
<td>5. Mechanism of Kinesin Movement Along Microtubule</td>
</tr>
<tr>
<td>6. Drug Binding Studied by Diffraction and Modeling</td>
</tr>
<tr>
<td>7. Tomography for Larger Structures</td>
</tr>
<tr>
<td>8. Conclusion</td>
</tr>
</tbody>
</table>
Acknowledgments
References

7. Helical Crystallization of Two Example Membrane Proteins: MsbA and the Ca^{2+}-ATPase
John Paul Glaves, Lauren Fisher, Andrew Ward, and Howard S. Young
1. Helical Crystallization of the Bacterial Integral Membrane Protein, MsbA
2. Helical Crystallization of the Sarcoplasmic Reticulum Ca^{2+}-ATPase
3. Discussion
4. Conclusions
Acknowledgments
References

8. Multiparticle Cryo-EM of Ribosomes
Justus Loerke, Jan Giesebrecht, and Christian M. T. Spahn
1. Introduction
2. Dealing with Heterogeneity: 3D Sorting
3. Subnanometer Multiparticle Cryo-EM of Ribosomes in Practice
4. Interpretation
5. Conclusions
Acknowledgments
References

9. Single-Particle Electron Microscopy of Animal Fatty Acid Synthase: Describing Macromolecular Rearrangements that Enable Catalysis
Edward J. Brignole and Francisco Asturias
1. Electron Microscopy and the Next Frontier in Structural Biology
2. The Catalytic Cycle of FAS Requires Conformational Changes
3. Methods and Rationale Employed in the Conformational Analysis of FAS
4. EM and FAS: A Versatile Tool for a Flexible Macromolecule
Acknowledgments
References

10. Tomography of Actin Cytoskeletal Networks
Dorit Hanein
1. Introduction
2. Testing the Lamella Hypothesis
3. Challenges
Acknowledgments
References

206
212
212

11. Visual Proteomics
Friedrich Förster, Bong-Gyoon Han, and Martin Beck

1. Introduction
2. Data Acquisition
3. Templates
4. Template Matching
5. Assessment of Performance
6. The Spatial Proteome of \textit{L. interrogans}
7. Outlook
Acknowledgments
References

215
216
217
221
227
232
237
241
241
242

12. Cryoelectron Tomography of Eukaryotic Cells
Asaf Mader, Nadav Elad, and Ohad Medalia

1. Introduction
2. Specimen Preparation
3. Relying on Correlative Light and Electron Microscope for Cellular Structural Study of Eukaryotic Cells
4. Cryoelectron Tomography of Cytoskeleton-Driven Processes
5. Cryotomography of Midbodies
6. Structural Analysis of the Nuclear Pore Complex by Cryo-ET
7. Concluding Remarks
Acknowledgments
References

245
246
248
252
254
256
257
260
260
260

13. 3D Visualization of HIV Virions by Cryoelectron Tomography
Jun Liu, Elizabeth R. Wright, and Hanspeter Winkler

1. Introduction
2. Cryoelectron Tomography
3. 3D Visualization of Intact HIV Virion
4. Conclusions and Perspective
Acknowledgments
References

267
268
270
278
286
286
286
286
286
286

1. Introduction 292
2. Specimen Preparation 295
3. Autoloading and Robotic Screening 300
4. Microscopy 304
5. Image Processing 311
6. Assessment and Integration 322
7. The Future of Automation 327
Acknowledgments 330
References 330

Author Index 339
Subject Index 355