Contents

List of Contributors, x

Preface, xi

1 Production Ecology and Nutrient Budgets, 1

S. B. CHAPMAN

- 1 Introduction, 1
- 2 The ecosystem, 1
 - 2.1 The ecosystem concept, 1
 - 2.2 Ecosystem modelling, 3
- 3 Production, decomposition and accumulation, 3
 - 3.1 Definitions, concepts and units, 3
 - 3.2 Measurement of the above-ground standing crop, 10
 - 3.3 Litter production, 17
 - 3.4 Decomposition and accumulation of litter, 21
 - 3.5 Roots and soil organic matter, 28
- 4 Nutrient and energy budgets, 39
 - 4.1 Estimation of nutrient and calorific content, 40
 - 4.2 Nutrient inputs, 41
 - 4.3 Nutrient losses, 44
 - 4.4 Measurement of calorific values, 47
- 5 Summary, 50
- 6 References, 51

2 Faecal Analysis and Exclosure Studies, 61

R. BHADRESA

- 1 Faecal analysis, 61
 - 1.1 Methods of analysis, 62
 - 1.2 Feeding trials, 67
- 2 Exclosure studies, 69
 - 2.1 Methods, 69
- 3 References, 70

3 Water Relations and Stress, 73

P. BANNISTER

- 1 Introduction, 73
 - 1.1 Water content and water potential, 73
- 2 Water in the environment, 75
 - 2.1 Atmospheric water, 75
 - 2.2 Soil moisture, 82
 - 2.3 Water balance using lysimeters, 89
- 3 Exchange of water with the environment, 90
 - 3.1 Uptake of water, 90
 - 3.2 Transport and storage of water, 91

Chapter 3 continued

- 3.3 Water loss (transpiration), 94
- 3.4 Diffusive resistance and conductance of leaves, 98
- 4 Status of water within the plant, 107
 - 4.1 Water content, 107
 - 4.2 Measurement of water potential, 110
 - 4.3 Relationship between water content and water potential, 121
- 5 Plant resistances to drought, heat and cold, 125
 - 5.1 Assessment of damage, 125
 - 5.2 Drought resistance, 127
 - 5.3 Heat resistance, 128
 - 5.4 Frost resistance, 129
- 6 References, 130

4 Mineral Nutrition, 145

I. H. RORISON and D. ROBINSON

- 1 Introduction, 145
- 2 Experimental approaches, 146
 - 2.1 Nutrient availability, 146
 - 2.2 Nutrient sources, 151
 - 2.3 Uniformity of nutrient supply, 152
 - 2.4 Effects of nutrients upon specific plant processes, 155
 - 2.5 Effects of specific environmental factors upon plants in relation to their nutrition, 169
 - 2.6 Community nutrient relationships, 176
- 3 Experimental methods, 181
 - 3.1 Root growth media, 181
 - 3.2 Controlled environments, 191
 - 3.3 Experimental materials, 191
 - 3.4 Chemical analysis, 198
 - 3.5 Isotope labelling, 198
 - 3.6 Bioassays, 200
 - 3.7 Screening programmes, 201
 - 3.8 Mathematical models, 201
- 4 Acknowledgments, 202
- 5 References, 203

5 Site and soils, 215

D. F. BALL

- 1 Introduction, 215
- 2 Site description, 216
 - 2.1 Location, 216
 - 2.2 Physiography, 217
 - 2.3 Geology, 219
 - 2.4 Climate, 220
- 3 Soil description and sampling, 221
 - 3.1 Profile preparation, 221
 - 3.2 Profile description, 222
 - 3.3 Soil sampling, 235
- 4 Soil classification, 239
 - 4.1 General considerations, 239
 - 4.2 Soil classification systems, 240

Chapter 5 continued

- 5 Soil and terrain maps, 248
 - 5.1 Soil maps, 248
 - 5.2 Terrain maps, 249
- 6 Physical and mineralogical analysis of soil, 250
 - 6.1 General considerations, 250
 - 6.2 Physical analyses, 252
 - 6.3 Mineralogical and fabric analyses, 268
- 7 Soils, site history, and plant distribution, 271
- 8 References, 274

6 Chemical Analysis, 285

S. E. ALLEN, H. M. GRIMSHAW and A. P. ROWLAND

- 1 General introduction, 285
 - 1.1 Laboratory practice and contamination, 285
 - 1.2 Concentration levels, 286
 - 1.3 Accuracy and precision, 287
- 2 Soils, 287
 - 2.1 Collection, 288
 - 2.2 Transport and storage, 289
 - 2.3 Drying and moisture determination, 289
 - 2.4 Sieving and grinding, 290
 - 2.5 Loss-on-ignition, 291
 - 2.6 pH, 291
 - 2.7 Extractable fraction, 292
- 3 Plant materials, 298
 - 3.1 Collection, 298
 - 3.2 Transport and storage, 299
 - 3.3 Drying and grinding, 299
 - 3.4 Moisture and ash, 300
 - 3.5 Preparation of solution for analysis, 300
- 4 Waters, 304
 - 4.1 Collection and storage, 304
 - 4.2 Preliminary treatment, 305
 - 4.3 Initial tests, 306
- 5 Individual elements, 308
 - 5.1 Introductory notes, 308
 - 5.2 Aluminium, 310
 - 5.3 Calcium, 311
 - 5.4 Carbon, 315
 - 5.5 Chloride, 317
 - 5.6 Copper, 318
 - 5.7 Iron, 319
 - 5.8 Magnesium, 321
 - 5.9 Manganese, 322
 - 5.10 Nitrogen, 323
 - 5.11 Phosphorus, 331
 - 5.12 Potassium, 332
 - 5.13 Silicon, 333
 - 5.14 Sodium, 335
 - 5.15 Sulphate-sulphur, 335
 - 5.16 Zinc, 337

Chapter 6 continued

- 6 Instrumental procedures, 338
 - 6.1 Colorimetry, 338
 - 6.2 Flame spectroscopy, 339
- 7 References, 342

7 Data Analysis, 345

- S. D. PRINCE
- 1 Introduction, 345
- 2 Sampling, 348
- 3 Purpose of an investigation, 350
 - 3.1 Accuracy of measurements, 351
 - 3.2 Comparison of measurements, 352
- 4 Types of measurement, 354
 - 4.1 Non-parametric tests, 355
 - 4.2 Classified data, 356
 - 4.3 Quantal responses, 357
- 5 Number of variables, 357
 - 5.1 Bivariate data, 358
 - 5.2 Multivariate data, 359
- 6 Mathematical and statistical models, 364
 - 6.1 Linear statistical models, 364
 - 6.2 Mathematical models, 368
- 7 Computers and data analysis, 368
- 8 References, 373

8 Plant Population Biology, 377

M. J. HUTCHINGS

- 1 Introduction, 377
- 2 Population biology of the seed phase, 378
 - 2.1 Seed production, 379
 - 2.2 Pre-dispersal seed population biology, 379
 - 2.3 Dispersal of seeds: the seed rain, 381
 - 2.4 Post-dispersal seed population biology, 384
 - 2.5 The seed bank, 386
- 2.6 The bud bank and pollen grains, 395
- 3 Population biology of growing plants, 395
 - 3.1 Sample sizes and sampling frequency, 396
 - 3.2 The population units to be studied, 397
 - 3.3 Censusing populations, 397
 - 3.4 Measurements on growing plants, 401
 - 3.5 Destructive measurements on plants, 403
- 4 Analysis, 405
 - 4.1 Within-population variation in demography, 405
 - 4.2 Equation of population flux, 407
 - 4.3 Analysis of population structure, 414
 - 4.4 Life-tables and fecundity schedules, 415
 - 4.5 Modelling population behaviour, 423
- 5 Conclusion, 425
- 6 References, 426

9 Description and Analysis of Vegetation, 437

F. B. GOLDSMITH, C. M. HARRISON and A. J. MORTON

- 1 Introduction, 437
 - 1.1 The dynamics of vegetation, 440
- 2 Description of vegetation, 442
 - 2.1 Measures based on physiognomy, 443
 - 2.2 Measures based on floristics, 448
- 3 Analysis of vegetation, 462
 - 3.1 Association and correlation, 462
 - 3.2 Measures of non-randomness, 466
 - 3.3 Classification and mapping, 474
 - 3.4 Vegetational and environmental gradients, 500
- 4 Choice of methods, 513
- 5 Computer programs, 515
- 6 References, 515

10 Site History, 525

P. D. MOORE

- 1 Introduction, 525
- 2 Biotic evidence, 526
 - 2.1 Floristic richness, 526
 - 2.2 Growth history of a species, 527
- 3 Documentary evidence, 529
- 4 Stratigraphic evidence, 529
 - 4.1 Site selection, 530
 - 4.2 Field sampling, 535
 - 4.3 Macrofossils, 541
 - 4.4 Microfossils, 546
 - 4.5 Chemical stratigraphy, 550
- 5 References, 551

Author Index, 557

Subject Index, 573